Online data-driven composite adaptive backstepping control with exact differentiators

نویسندگان

  • Yongping Pan
  • Yiqi Liu
  • Haoyong Yu
چکیده

This paper presents an online data-driven composite adaptive backstepping control for a class of parametric strict-feedback nonlinear systems with mismatched uncertainties, where both tracking errors and prediction errors are utilized to update parametric estimates. Hybrid exact differentiators are applied to obtain the derivatives of virtual control inputs such that the complexity problem of integrator backstepping can be avoided. Closed-loop tracking error equations are integrated in a moving-time window to generate prediction errors such that online recorded data can be utilized to improve parameter adaptation. Semiglobal asymptotic stability of the closed-loop system is rigorously established by the time-scales separation and Lyapunov synthesis. The proposed composite adaptation can not only avoid the application of identification models and linear filters resulting in a simpler control structure, but also suppress parametric uncertainties and external perturbations via the time-interval integral. Simulation results have demonstrated that the proposed approach possesses superior control performances under both noise-free and noisy-measurement environments. Copyright © 2015 John Wiley & Sons, Ltd.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ADAPTIVE FUZZY TRACKING CONTROL FOR A CLASS OF PERTURBED NONLINEARLY PARAMETERIZED SYSTEMS USING MINIMAL LEARNING PARAMETERS ALGORITHM

In this paper, an adaptive fuzzy tracking control approach is proposed for a class of single-inputsingle-output (SISO) nonlinear systems in which the unknown continuous functions may be nonlinearlyparameterized. During the controller design procedure, the fuzzy logic systems (FLS) in Mamdani type are applied to approximate the unknown continuous functions, and then, based on the minimal learnin...

متن کامل

Robust Control of Encoderless Synchronous Reluctance Motor Drives Based on Adaptive Backstepping and Input-Output Feedback Linearization Techniques

In this paper, the design and implementation of adaptive speed controller for a sensorless synchronous reluctance motor (SynRM) drive system is proposed. A combination of well-known adaptive input-output feedback linearization (AIOFL) and adaptive backstepping (ABS) techniques are used for speed tracking control of SynRM. The AIOFL controller is capable of estimating motor two-axis inductances ...

متن کامل

Fuzzy adaptive tracking control for a class of nonlinearly parameterized systems with unknown control directions

This paper addresses the problem of adaptive fuzzy tracking control for aclass of nonlinearly parameterized systems with unknown control directions.In this paper, the nonlinearly parameterized functions are lumped into the unknown continuous functionswhich can be approximated by using the fuzzy logic systems (FLS) in Mamdani type. Then, the Nussbaum-type function is used to de...

متن کامل

Composite learning from adaptive backstepping neural network control

In existing neural network (NN) learning control methods, the trajectory of NN inputs must be recurrent to satisfy a stringent condition termed persistent excitation (PE) so that NN parameter convergence is obtainable. This paper focuses on command-filtered backstepping adaptive control for a class of strict-feedback nonlinear systems with functional uncertainties, where an NN composite learnin...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016